Adaptivity to Local Smoothness and Dimension in Kernel Regression

We present the first result for kernel regression where the procedure adapts locally at a point $x$ to both the unknown local dimension of the metric and the unknown H\{o}lder-continuity of the regression function at $x$. The result holds with high probability simultaneously at all points $x$ in a metric space of unknown structure."..

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet