Addressing Limited Data for Textual Entailment Across Domains

We seek to address the lack of labeled data (and high cost of annotation) for textual entailment in some domains. To that end, we first create (for experimental purposes) an entailment dataset for the clinical domain, and a highly competitive supervised entailment system, ENT, that is effective (out of the box) on two domains... We then explore self-training and active learning strategies to address the lack of labeled data. With self-training, we successfully exploit unlabeled data to improve over ENT by 15% F-score on the newswire domain, and 13% F-score on clinical data. On the other hand, our active learning experiments demonstrate that we can match (and even beat) ENT using only 6.6% of the training data in the clinical domain, and only 5.8% of the training data in the newswire domain. read more

Results in Papers With Code
(↓ scroll down to see all results)