ADT-SSL: Adaptive Dual-Threshold for Semi-Supervised Learning

21 May 2022  ·  Zechen Liang, Yuan-Gen Wang, Wei Lu, Xiaochun Cao ·

Semi-Supervised Learning (SSL) has advanced classification tasks by inputting both labeled and unlabeled data to train a model jointly. However, existing SSL methods only consider the unlabeled data whose predictions are beyond a fixed threshold (e.g., 0.95), ignoring the valuable information from those less than 0.95. We argue that these discarded data have a large proportion and are usually of hard samples, thereby benefiting the model training. This paper proposes an Adaptive Dual-Threshold method for Semi-Supervised Learning (ADT-SSL). Except for the fixed threshold, ADT extracts another class-adaptive threshold from the labeled data to take full advantage of the unlabeled data whose predictions are less than 0.95 but more than the extracted one. Accordingly, we engage CE and $L_2$ loss functions to learn from these two types of unlabeled data, respectively. For highly similar unlabeled data, we further design a novel similar loss to make the prediction of the model consistency. Extensive experiments are conducted on benchmark datasets, including CIFAR-10, CIFAR-100, and SVHN. Experimental results show that the proposed ADT-SSL achieves state-of-the-art classification accuracy.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here