Paper

Advanced Bloom Filter Based Algorithms for Efficient Approximate Data De-Duplication in Streams

Applications involving telecommunication call data records, web pages, online transactions, medical records, stock markets, climate warning systems, etc., necessitate efficient management and processing of such massively exponential amount of data from diverse sources. De-duplication or Intelligent Compression in streaming scenarios for approximate identification and elimination of duplicates from such unbounded data stream is a greater challenge given the real-time nature of data arrival. Stable Bloom Filters (SBF) addresses this problem to a certain extent. . In this work, we present several novel algorithms for the problem of approximate detection of duplicates in data streams. We propose the Reservoir Sampling based Bloom Filter (RSBF) combining the working principle of reservoir sampling and Bloom Filters. We also present variants of the novel Biased Sampling based Bloom Filter (BSBF) based on biased sampling concepts. We also propose a randomized load balanced variant of the sampling Bloom Filter approach to efficiently tackle the duplicate detection. In this work, we thus provide a generic framework for de-duplication using Bloom Filters. Using detailed theoretical analysis we prove analytical bounds on the false positive rate, false negative rate and convergence rate of the proposed structures. We exhibit that our models clearly outperform the existing methods. We also demonstrate empirical analysis of the structures using real-world datasets (3 million records) and also with synthetic datasets (1 billion records) capturing various input distributions.

Results in Papers With Code
(↓ scroll down to see all results)