Natural & Adversarial Bokeh Rendering via Circle-of-Confusion Predictive Network

25 Nov 2021  ·  Yihao Huang, Felix Juefei-Xu, Qing Guo, Geguang Pu, Yang Liu ·

Bokeh effect is a natural shallow depth-of-field phenomenon that blurs the out-of-focus part in photography. In recent years, a series of works have proposed automatic and realistic bokeh rendering methods for artistic and aesthetic purposes. They usually employ cutting-edge data-driven deep generative networks with complex training strategies and network architectures. However, these works neglect that the bokeh effect, as a real phenomenon, can inevitably affect the subsequent visual intelligent tasks like recognition, and their data-driven nature prevents them from studying the influence of bokeh-related physical parameters (i.e., depth-of-the-field) on the intelligent tasks. To fill this gap, we study a totally new problem, i.e., natural & adversarial bokeh rendering, which consists of two objectives: rendering realistic and natural bokeh and fooling the visual perception models (i.e., bokeh-based adversarial attack). To this end, beyond the pure data-driven solution, we propose a hybrid alternative by taking the respective advantages of data-driven and physical-aware methods. Specifically, we propose the circle-of-confusion predictive network (CoCNet) by taking the all-in-focus image and depth image as inputs to estimate circle-of-confusion parameters for each pixel, which are employed to render the final image through a well-known physical model of bokeh. With the hybrid solution, our method could achieve more realistic rendering results with the naive training strategy and a much lighter network.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods