Adversarial Alignment of Class Prediction Uncertainties for Domain Adaptation

We consider unsupervised domain adaptation: given labelled examples from a source domain and unlabelled examples from a related target domain, the goal is to infer the labels of target examples. Under the assumption that features from pre-trained deep neural networks are transferable across related domains, domain adaptation reduces to aligning source and target domain at class prediction uncertainty level... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet