Adversarial Examples in Multi-Layer Random ReLU Networks

We consider the phenomenon of adversarial examples in ReLU networks with independent gaussian parameters. For networks of constant depth and with a large range of widths (for instance, it suffices if the width of each layer is polynomial in that of any other layer), small perturbations of input vectors lead to large changes of outputs. This generalizes results of Daniely and Schacham (2020) for networks of rapidly decreasing width and of Bubeck et al (2021) for two-layer networks. The proof shows that adversarial examples arise in these networks because the functions that they compute are very close to linear. Bottleneck layers in the network play a key role: the minimal width up to some point in the network determines scales and sensitivities of mappings computed up to that point. The main result is for networks with constant depth, but we also show that some constraint on depth is necessary for a result of this kind, because there are suitably deep networks that, with constant probability, compute a function that is close to constant.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here