Progressive Backdoor Erasing via connecting Backdoor and Adversarial Attacks

Deep neural networks (DNNs) are known to be vulnerable to both backdoor attacks as well as adversarial attacks. In the literature, these two types of attacks are commonly treated as distinct problems and solved separately, since they belong to training-time and inference-time attacks respectively. However, in this paper we find an intriguing connection between them: for a model planted with backdoors, we observe that its adversarial examples have similar behaviors as its triggered images, i.e., both activate the same subset of DNN neurons. It indicates that planting a backdoor into a model will significantly affect the model's adversarial examples. Based on these observations, a novel Progressive Backdoor Erasing (PBE) algorithm is proposed to progressively purify the infected model by leveraging untargeted adversarial attacks. Different from previous backdoor defense methods, one significant advantage of our approach is that it can erase backdoor even when the clean extra dataset is unavailable. We empirically show that, against 5 state-of-the-art backdoor attacks, our PBE can effectively erase the backdoor without obvious performance degradation on clean samples and significantly outperforms existing defense methods.

PDF Abstract CVPR 2023 PDF CVPR 2023 Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here