Adversarial Generation of Continuous Implicit Shape Representations

This work presents a generative adversarial architecture for generating three-dimensional shapes based on signed distance representations. While the deep generation of shapes has been mostly tackled by voxel and surface point cloud approaches, our generator learns to approximate the signed distance for any point in space given prior latent information... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet