Adversarial Learning for Zero-shot Domain Adaptation

ECCV 2020  ·  Jinghua Wang, Jianmin Jiang ·

Zero-shot domain adaptation (ZSDA) is a category of domain adaptation problems where neither data sample nor label is available for parameter learning in the target domain. With the hypothesis that the shift between a given pair of domains is shared across tasks, we propose a new method for ZSDA by transferring domain shift from an irrelevant task (IrT) to the task of interest (ToI)... Specifically, we first identify an IrT, where dual-domain samples are available, and capture the domain shift with a coupled generative adversarial networks (CoGAN) in this task. Then, we train a CoGAN for the ToI and restrict it to carry the same domain shift as the CoGAN for IrT does. In addition, we introduce a pair of co-training classifiers to regularize the training procedure of CoGAN in the ToI. The proposed method not only derives machine learning models for the non-available target-domain data, but also synthesizes the data themselves. We evaluate the proposed method on benchmark datasets and achieve the state-of-the-art performances. read more

PDF Abstract ECCV 2020 PDF ECCV 2020 Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here