Adversarial Self-Supervised Contrastive Learning

NeurIPS 2020  ·  Minseon Kim, Jihoon Tack, Sung Ju Hwang ·

Existing adversarial learning approaches mostly use class labels to generate adversarial samples that lead to incorrect predictions, which are then used to augment the training of the model for improved robustness. While some recent works propose semi-supervised adversarial learning methods that utilize unlabeled data, they still require class labels. However, do we really need class labels at all, for adversarially robust training of deep neural networks? In this paper, we propose a novel adversarial attack for unlabeled data, which makes the model confuse the instance-level identities of the perturbed data samples. Further, we present a self-supervised contrastive learning framework to adversarially train a robust neural network without labeled data, which aims to maximize the similarity between a random augmentation of a data sample and its instance-wise adversarial perturbation. We validate our method, Robust Contrastive Learning (RoCL), on multiple benchmark datasets, on which it obtains comparable robust accuracy over state-of-the-art supervised adversarial learning methods, and significantly improved robustness against the black box and unseen types of attacks. Moreover, with further joint fine-tuning with supervised adversarial loss, RoCL obtains even higher robust accuracy over using self-supervised learning alone. Notably, RoCL also demonstrate impressive results in robust transfer learning.

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here