Adversarial Vulnerability of Neural Networks Increases with Input Dimension

Over the past four years, neural networks have been proven vulnerable to adversarial images: targeted but imperceptible image perturbations lead to drastically different predictions. We show that adversarial vulnerability increases with the gradients of the training objective when viewed as a function of the inputs. For most current network architectures, we prove that the L1-norm of these gradients grows as the square root of the input size. These nets therefore become increasingly vulnerable with growing image size. Our proofs rely on the network’s weight distribution at initialization, but extensive experiments confirm that our conclusions still hold after usual training.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here