AdvMS: A Multi-source Multi-cost Defense Against Adversarial Attacks

19 Feb 2020  ·  Xiao Wang, Siyue Wang, Pin-Yu Chen, Xue Lin, Peter Chin ·

Designing effective defense against adversarial attacks is a crucial topic as deep neural networks have been proliferated rapidly in many security-critical domains such as malware detection and self-driving cars. Conventional defense methods, although shown to be promising, are largely limited by their single-source single-cost nature: The robustness promotion tends to plateau when the defenses are made increasingly stronger while the cost tends to amplify. In this paper, we study principles of designing multi-source and multi-cost schemes where defense performance is boosted from multiple defending components. Based on this motivation, we propose a multi-source and multi-cost defense scheme, Adversarially Trained Model Switching (AdvMS), that inherits advantages from two leading schemes: adversarial training and random model switching. We show that the multi-source nature of AdvMS mitigates the performance plateauing issue and the multi-cost nature enables improving robustness at a flexible and adjustable combination of costs over different factors which can better suit specific restrictions and needs in practice.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here