AFEC: A Knowledge Graph Capturing Social Intelligence in Casual Conversations

22 May 2022  ·  Yubo Xie, Junze Li, Pearl Pu ·

This paper introduces AFEC, an automatically curated knowledge graph based on people's day-to-day casual conversations. The knowledge captured in this graph bears potential for conversational systems to understand how people offer acknowledgement, consoling, and a wide range of empathetic responses in social conversations. For this body of knowledge to be comprehensive and meaningful, we curated a large-scale corpus from the r/CasualConversation SubReddit. After taking the first two turns of all conversations, we obtained 134K speaker nodes and 666K listener nodes. To demonstrate how a chatbot can converse in social settings, we built a retrieval-based chatbot and compared it with existing empathetic dialog models. Experiments show that our model is capable of generating much more diverse responses (at least 15% higher diversity scores in human evaluation), while still outperforming two out of the four baselines in terms of response quality.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here