Affect Estimation in 3D Space Using Multi-Task Active Learning for Regression

8 Aug 2018  ·  Dongrui Wu, Jian Huang ·

Acquisition of labeled training samples for affective computing is usually costly and time-consuming, as affects are intrinsically subjective, subtle and uncertain, and hence multiple human assessors are needed to evaluate each affective sample. Particularly, for affect estimation in the 3D space of valence, arousal and dominance, each assessor has to perform the evaluations in three dimensions, which makes the labeling problem even more challenging... Many sophisticated machine learning approaches have been proposed to reduce the data labeling requirement in various other domains, but so far few have considered affective computing. This paper proposes two multi-task active learning for regression approaches, which select the most beneficial samples to label, by considering the three affect primitives simultaneously. Experimental results on the VAM corpus demonstrated that our optimal sample selection approaches can result in better estimation performance than random selection and several traditional single-task active learning approaches. Thus, they can help alleviate the data labeling problem in affective computing, i.e., better estimation performance can be obtained from fewer labeling queries. read more

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here