AGA: Attribute Guided Augmentation

8 Dec 2016Mandar DixitRoland KwittMarc NiethammerNuno Vasconcelos

We consider the problem of data augmentation, i.e., generating artificial samples to extend a given corpus of training data. Specifically, we propose attributed-guided augmentation (AGA) which learns a mapping that allows to synthesize data such that an attribute of a synthesized sample is at a desired value or strength... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet