Agent-Centric Projection of Prompting Techniques and Implications for Synthetic Training Data for Large Language Models

14 Jan 2025  ·  Dhruv Dhamani, Mary Lou Maher ·

Recent advances in prompting techniques and multi-agent systems for Large Language Models (LLMs) have produced increasingly complex approaches. However, we lack a framework for characterizing and comparing prompting techniques or understanding their relationship to multi-agent LLM systems. This position paper introduces and explains the concepts of linear contexts (a single, continuous sequence of interactions) and non-linear contexts (branching or multi-path) in LLM systems. These concepts enable the development of an agent-centric projection of prompting techniques, a framework that can reveal deep connections between prompting strategies and multi-agent systems. We propose three conjectures based on this framework: (1) results from non-linear prompting techniques can predict outcomes in equivalent multi-agent systems, (2) multi-agent system architectures can be replicated through single-LLM prompting techniques that simulate equivalent interaction patterns, and (3) these equivalences suggest novel approaches for generating synthetic training data. We argue that this perspective enables systematic cross-pollination of research findings between prompting and multi-agent domains, while providing new directions for improving both the design and training of future LLM systems.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here