Agnostic Learning of Disjunctions on Symmetric Distributions

27 May 2014  ·  Vitaly Feldman, Pravesh Kothari ·

We consider the problem of approximating and learning disjunctions (or equivalently, conjunctions) on symmetric distributions over $\{0,1\}^n$. Symmetric distributions are distributions whose PDF is invariant under any permutation of the variables. We give a simple proof that for every symmetric distribution $\mathcal{D}$, there exists a set of $n^{O(\log{(1/\epsilon)})}$ functions $\mathcal{S}$, such that for every disjunction $c$, there is function $p$, expressible as a linear combination of functions in $\mathcal{S}$, such that $p$ $\epsilon$-approximates $c$ in $\ell_1$ distance on $\mathcal{D}$ or $\mathbf{E}_{x \sim \mathcal{D}}[ |c(x)-p(x)|] \leq \epsilon$. This directly gives an agnostic learning algorithm for disjunctions on symmetric distributions that runs in time $n^{O( \log{(1/\epsilon)})}$. The best known previous bound is $n^{O(1/\epsilon^4)}$ and follows from approximation of the more general class of halfspaces (Wimmer, 2010). We also show that there exists a symmetric distribution $\mathcal{D}$, such that the minimum degree of a polynomial that $1/3$-approximates the disjunction of all $n$ variables is $\ell_1$ distance on $\mathcal{D}$ is $\Omega( \sqrt{n})$. Therefore the learning result above cannot be achieved via $\ell_1$-regression with a polynomial basis used in most other agnostic learning algorithms. Our technique also gives a simple proof that for any product distribution $\mathcal{D}$ and every disjunction $c$, there exists a polynomial $p$ of degree $O(\log{(1/\epsilon)})$ such that $p$ $\epsilon$-approximates $c$ in $\ell_1$ distance on $\mathcal{D}$. This was first proved by Blais et al. (2008) via a more involved argument.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here