ALFA: A Dataset for UAV Fault and Anomaly Detection

14 Jul 2019  ·  Azarakhsh Keipour, Mohammadreza Mousaei, Sebastian Scherer ·

We present a dataset of several fault types in control surfaces of a fixed-wing Unmanned Aerial Vehicle (UAV) for use in Fault Detection and Isolation (FDI) and Anomaly Detection (AD) research. Currently, the dataset includes processed data for 47 autonomous flights with scenarios for eight different types of control surface (actuator and engine) faults, with a total of 66 minutes of flight in normal conditions and 13 minutes of post-fault flight time. It additionally includes many hours of raw data of fully-autonomous, autopilot-assisted and manual flights with tens of fault scenarios. The ground truth of the time and type of faults is provided in each scenario to enable evaluation of the methods using the dataset. We have also provided the helper tools in several programming languages to load and work with the data and to help the evaluation of a detection method using the dataset. A set of metrics is proposed to help to compare different methods using the dataset. Most of the current fault detection methods are evaluated in simulation and as far as we know, this dataset is the only one providing the real flight data with faults in such capacity. We hope it will help advance the state-of-the-art in Anomaly Detection or FDI research for Autonomous Aerial Vehicles and mobile robots to enhance the safety of autonomous and remote flight operations further. The dataset and the provided tools can be accessed from http://theairlab.org/alfa-dataset.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here