Algorithmic Assistance with Recommendation-Dependent Preferences

16 Aug 2022  ·  Bryce McLaughlin, Jann Spiess ·

When an algorithm provides risk assessments, we typically think of them as helpful inputs to human decisions, such as when risk scores are presented to judges or doctors. However, a decision-maker may not only react to the information provided by the algorithm. The decision-maker may also view the algorithmic recommendation as a default action, making it costly for them to deviate, such as when a judge is reluctant to overrule a high-risk assessment for a defendant or a doctor fears the consequences of deviating from recommended procedures. To address such unintended consequences of algorithmic assistance, we propose a principal-agent model of joint human-machine decision-making. Within this model, we consider the effect and design of algorithmic recommendations when they affect choices not just by shifting beliefs, but also by altering preferences. We motivate this assumption from institutional factors, such as a desire to avoid audits, as well as from well-established models in behavioral science that predict loss aversion relative to a reference point, which here is set by the algorithm. We show that recommendation-dependent preferences create inefficiencies where the decision-maker is overly responsive to the recommendation. As a potential remedy, we discuss algorithms that strategically withhold recommendations, and show how they can improve the quality of final decisions.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here