Algorithmic Chaining and the Role of Partial Feedback in Online Nonparametric Learning

27 Feb 2017  ·  Nicolò Cesa-Bianchi, Pierre Gaillard, Claudio Gentile, Sébastien Gerchinovitz ·

We investigate contextual online learning with nonparametric (Lipschitz) comparison classes under different assumptions on losses and feedback information. For full information feedback and Lipschitz losses, we design the first explicit algorithm achieving the minimax regret rate (up to log factors)... In a partial feedback model motivated by second-price auctions, we obtain algorithms for Lipschitz and semi-Lipschitz losses with regret bounds improving on the known bounds for standard bandit feedback. Our analysis combines novel results for contextual second-price auctions with a novel algorithmic approach based on chaining. When the context space is Euclidean, our chaining approach is efficient and delivers an even better regret bound. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here