Algorithmic clothing: hybrid recommendation, from street-style-to-shop

26 May 2017Y QianP GiacconeM SasdelliE VasquezB Sengupta

In this paper we detail Cortexica's ( recommendation framework -- particularly, we describe how a hybrid visual recommender system can be created by combining conditional random fields for segmentation and deep neural networks for object localisation and feature representation. The recommendation system that is built after localisation, segmentation and classification has two properties -- first, it is knowledge based in the sense that it learns pairwise preference/occurrence matrix by utilising knowledge from experts (images from fashion blogs) and second, it is content-based as it utilises a deep learning based framework for learning feature representation... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.