Algorithmic Regularization in Over-parameterized Matrix Sensing and Neural Networks with Quadratic Activations

26 Dec 2017Yuanzhi LiTengyu MaHongyang Zhang

We show that the gradient descent algorithm provides an implicit regularization effect in the learning of over-parameterized matrix factorization models and one-hidden-layer neural networks with quadratic activations. Concretely, we show that given $\tilde{O}(dr^{2})$ random linear measurements of a rank $r$ positive semidefinite matrix $X^{\star}$, we can recover $X^{\star}$ by parameterizing it by $UU^\top$ with $U\in \mathbb R^{d\times d}$ and minimizing the squared loss, even if $r \ll d$... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet