Algorithms and Hardness for Robust Subspace Recovery

5 Nov 2012  ·  Moritz Hardt, Ankur Moitra ·

We consider a fundamental problem in unsupervised learning called \emph{subspace recovery}: given a collection of $m$ points in $\mathbb{R}^n$, if many but not necessarily all of these points are contained in a $d$-dimensional subspace $T$ can we find it? The points contained in $T$ are called {\em inliers} and the remaining points are {\em outliers}. This problem has received considerable attention in computer science and in statistics. Yet efficient algorithms from computer science are not robust to {\em adversarial} outliers, and the estimators from robust statistics are hard to compute in high dimensions. Are there algorithms for subspace recovery that are both robust to outliers and efficient? We give an algorithm that finds $T$ when it contains more than a $\frac{d}{n}$ fraction of the points. Hence, for say $d = n/2$ this estimator is both easy to compute and well-behaved when there are a constant fraction of outliers. We prove that it is Small Set Expansion hard to find $T$ when the fraction of errors is any larger, thus giving evidence that our estimator is an {\em optimal} compromise between efficiency and robustness. As it turns out, this basic problem has a surprising number of connections to other areas including small set expansion, matroid theory and functional analysis that we make use of here.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here