Alibaba's Neural Machine Translation Systems for WMT18
This paper describes the submission systems of Alibaba for WMT18 shared news translation task. We participated in 5 translation directions including English ↔ Russian, English ↔ Turkish in both directions and English → Chinese. Our systems are based on Google{'}s Transformer model architecture, into which we integrated the most recent features from the academic research. We also employed most techniques that have been proven effective during the past WMT years, such as BPE, back translation, data selection, model ensembling and reranking, at industrial scale. For some morphologically-rich languages, we also incorporated linguistic knowledge into our neural network. For the translation tasks in which we have participated, our resulting systems achieved the best case sensitive BLEU score in all 5 directions. Notably, our English → Russian system outperformed the second reranked system by 5 BLEU score.
PDF Abstract