Alignment Analysis of Sequential Segmentation of Lexicons to Improve Automatic Cognate Detection

ACL 2018  ·  Pranav A ·

Ranking functions in information retrieval are often used in search engines to recommend the relevant answers to the query. This paper makes use of this notion of information retrieval and applies onto the problem domain of cognate detection. The main contributions of this paper are: (1) positional segmentation, which incorporates the sequential notion; (2) graphical error modelling, which deduces the transformations. The current research work focuses on classification problem; which is distinguishing whether a pair of words are cognates. This paper focuses on a harder problem, whether we could predict a possible cognate from the given input. Our study shows that when language modelling smoothing methods are applied as the retrieval functions and used in conjunction with positional segmentation and error modelling gives better results than competing baselines, in both classification and prediction of cognates. Source code is at:

PDF Abstract ACL 2018 PDF ACL 2018 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here