Almost Optimal Model-Free Reinforcement Learning via Reference-Advantage Decomposition

21 Apr 2020Zihan ZhangYuan ZhouXiangyang Ji

We study the reinforcement learning problem in the setting of finite-horizon episodic Markov Decision Processes (MDPs) with $S$ states, $A$ actions, and episode length $H$. We propose a model-free algorithm UCB-Advantage and prove that it achieves $\tilde{O}(\sqrt{H^2SAT})$ regret where $T = KH$ and $K$ is the number of episodes to play... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet