Amalgamating Filtered Knowledge: Learning Task-customized Student from Multi-task Teachers

28 May 2019  ·  Jingwen Ye, Xinchao Wang, Yixin Ji, Kairi Ou, Mingli Song ·

Many well-trained Convolutional Neural Network(CNN) models have now been released online by developers for the sake of effortless reproducing. In this paper, we treat such pre-trained networks as teachers and explore how to learn a target student network for customized tasks, using multiple teachers that handle different tasks. We assume no human-labelled annotations are available, and each teacher model can be either single- or multi-task network, where the former is a degenerated case of the latter. The student model, depending on the customized tasks, learns the related knowledge filtered from the multiple teachers, and eventually masters the complete or a subset of expertise from all teachers. To this end, we adopt a layer-wise training strategy, which entangles the student's network block to be learned with the corresponding teachers. As demonstrated on several benchmarks, the learned student network achieves very promising results, even outperforming the teachers on the customized tasks.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here