Tuning complex machine learning systems is challenging. Machine learning typically requires to set hyperparameters, be it regularization, architecture, or optimization parameters, whose tuning is critical to achieve good predictive performance. To democratize access to machine learning systems, it is essential to automate the tuning. This paper presents Amazon SageMaker Automatic Model Tuning (AMT), a fully managed system for gradient-free optimization at scale. AMT finds the best version of a trained machine learning model by repeatedly evaluating it with different hyperparameter configurations. It leverages either random search or Bayesian optimization to choose the hyperparameter values resulting in the best model, as measured by the metric chosen by the user. AMT can be used with built-in algorithms, custom algorithms, and Amazon SageMaker pre-built containers for machine learning frameworks. We discuss the core functionality, system architecture, our design principles, and lessons learned. We also describe more advanced features of AMT, such as automated early stopping and warm-starting, showing in experiments their benefits to users.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.