AmbientGAN: Generative models from lossy measurements

Generative models provide a way to model structure in complex distributions and have been shown to be useful for many tasks of practical interest. However, current techniques for training generative models require access to fully-observed samples... In many settings, it is expensive or even impossible to obtain fully-observed samples, but economical to obtain partial, noisy observations. We consider the task of learning an implicit generative model given only lossy measurements of samples from the distribution of interest. We show that the true underlying distribution can be provably recovered even in the presence of per-sample information loss for a class of measurement models. Based on this, we propose a new method of training Generative Adversarial Networks (GANs) which we call AmbientGAN. On three benchmark datasets, and for various measurement models, we demonstrate substantial qualitative and quantitative improvements. Generative models trained with our method can obtain $2$-$4$x higher inception scores than the baselines. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here