Amodal Completion and Size Constancy in Natural Scenes

We consider the problem of enriching current object detection systems with veridical object sizes and relative depth estimates from a single image. There are several technical challenges to this, such as occlusions, lack of calibration data and the scale ambiguity between object size and distance... These have not been addressed in full generality in previous work. Here we propose to tackle these issues by building upon advances in object recognition and using recently created large-scale datasets. We first introduce the task of amodal bounding box completion, which aims to infer the the full extent of the object instances in the image. We then propose a probabilistic framework for learning category-specific object size distributions from available annotations and leverage these in conjunction with amodal completion to infer veridical sizes in novel images. Finally, we introduce a focal length prediction approach that exploits scene recognition to overcome inherent scaling ambiguities and we demonstrate qualitative results on challenging real-world scenes. read more

PDF Abstract ICCV 2015 PDF ICCV 2015 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here