Amrita_CEN at SemEval-2022 Task 4: Oversampling-based Machine Learning Approach for Detecting Patronizing and Condescending Language

This paper narrates the work of the team Amrita_CEN for the shared task on Patronizing and Condescending Language Detection at SemEval 2022. We implemented machine learning algorithms such as Support Vector Machine (SVV), Logistic regression, Naive Bayes, XG Boost and Random Forest for modelling the tasks. At the same time, we also applied a feature engineering method to solve the class imbalance problem with respect to training data. Among all the models, the logistic regression model outperformed all other models and we have submitted results based upon the same.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here