An active efficient coding model of the optokinetic nystagmus

21 Jun 2016  ·  Chong Zhang, Jochen Triesch, Bertram E. Shi ·

Optokinetic nystagmus (OKN) is an involuntary eye movement responsible for stabilizing retinal images in the presence of relative motion between an observer and the environment. Fully understanding the development of optokinetic nystagmus requires a neurally plausible computational model that accounts for the neural development and the behavior. To date, work in this area has been limited. We propose a neurally plausible framework for the joint development of disparity and motion tuning in the visual cortex, the optokinetic and vergence eye movements. This framework models the joint emergence of both perception and behavior, and accounts for the importance of the development of normal vergence control and binocular vision in achieving normal monocular OKN (mOKN) behaviors. Because the model includes behavior, we can simulate the same perturbations as performed in past experiments, such as artificially induced strabismus. The proposed model agrees both qualitatively and quantitatively with a number of findings from the literature on both binocular vision as well as the optokinetic reflex. Finally, our model also makes quantitative predictions about the OKN behavior using the same methods used to characterize the OKN in the experimental literature.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here