An Adaptive and Near Parameter-free Evolutionary Computation Approach Towards True Automation in AutoML

28 Jan 2020  ·  Benjamin Patrick Evans, Bing Xue, Mengjie Zhang ·

A common claim of evolutionary computation methods is that they can achieve good results without the need for human intervention. However, one criticism of this is that there are still hyperparameters which must be tuned in order to achieve good performance. In this work, we propose a near "parameter-free" genetic programming approach, which adapts the hyperparameter values throughout evolution without ever needing to be specified manually. We apply this to the area of automated machine learning (by extending TPOT), to produce pipelines which can effectively be claimed to be free from human input, and show that the results are competitive with existing state-of-the-art which use hand-selected hyperparameter values. Pipelines begin with a randomly chosen estimator and evolve to competitive pipelines automatically. This work moves towards a truly automatic approach to AutoML.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here