An AI model for Rapid and Accurate Identification of Chemical Agents in Mass Casualty Incidents

12 Dec 2019  ·  Nicholas Boltin, Daniel Vu, Bethany Janos, Alyssa Shofner, Joan Culley, Homayoun Valafar ·

In this report we examine the effectiveness of WISER in identification of a chemical culprit during a chemical based Mass Casualty Incident (MCI). We also evaluate and compare Binary Decision Tree (BDT) and Artificial Neural Networks (ANN) using the same experimental conditions as WISER... The reverse engineered set of Signs/Symptoms from the WISER application was used as the training set and 31,100 simulated patient records were used as the testing set. Three sets of simulated patient records were generated by 5%, 10% and 15% perturbation of the Signs/Symptoms of each chemical record. While all three methods achieved a 100% training accuracy, WISER, BDT and ANN produced performances in the range of: 1.8%-0%, 65%-26%, 67%-21% respectively. A preliminary investigation of dimensional reduction using ANN illustrated a dimensional collapse from 79 variables to 40 with little loss of classification performance. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here