An algorithm for online tensor prediction

28 Jul 2015  ·  John Pothier, Josh Girson, Shuchin Aeron ·

We present a new method for online prediction and learning of tensors ($N$-way arrays, $N >2$) from sequential measurements. We focus on the specific case of 3-D tensors and exploit a recently developed framework of structured tensor decompositions proposed in [1]. In this framework it is possible to treat 3-D tensors as linear operators and appropriately generalize notions of rank and positive definiteness to tensors in a natural way. Using these notions we propose a generalization of the matrix exponentiated gradient descent algorithm [2] to a tensor exponentiated gradient descent algorithm using an extension of the notion of von-Neumann divergence to tensors. Then following a similar construction as in [3], we exploit this algorithm to propose an online algorithm for learning and prediction of tensors with provable regret guarantees. Simulations results are presented on semi-synthetic data sets of ratings evolving in time under local influence over a social network. The result indicate superior performance compared to other (online) convex tensor completion methods.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here