An Analysis of the Effects of Decoding Algorithms on Fairness in Open-Ended Language Generation

7 Oct 2022  ·  Jwala Dhamala, Varun Kumar, Rahul Gupta, Kai-Wei Chang, Aram Galstyan ·

Several prior works have shown that language models (LMs) can generate text containing harmful social biases and stereotypes. While decoding algorithms play a central role in determining properties of LM generated text, their impact on the fairness of the generations has not been studied. We present a systematic analysis of the impact of decoding algorithms on LM fairness, and analyze the trade-off between fairness, diversity and quality. Our experiments with top-$p$, top-$k$ and temperature decoding algorithms, in open-ended language generation, show that fairness across demographic groups changes significantly with change in decoding algorithm's hyper-parameters. Notably, decoding algorithms that output more diverse text also output more texts with negative sentiment and regard. We present several findings and provide recommendations on standardized reporting of decoding details in fairness evaluations and optimization of decoding algorithms for fairness alongside quality and diversity.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here