An Approximate, Efficient LP Solver for LP Rounding

Many problems in machine learning can be solved by rounding the solution of an appropriate linear program. We propose a scheme that is based on a quadratic program relaxation which allows us to use parallel stochastic-coordinate-descent to approximately solve large linear programs efficiently. Our software is an order of magnitude faster than Cplex (a commercial linear programming solver) and yields similar solution quality. Our results include a novel perturbation analysis of a quadratic-penalty formulation of linear programming and a convergence result, which we use to derive running time and quality guarantees.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here