An Architecture for Deep, Hierarchical Generative Models

NeurIPS 2016  ·  Philip Bachman ·

We present an architecture which lets us train deep, directed generative models with many layers of latent variables. We include deterministic paths between all latent variables and the generated output, and provide a richer set of connections between computations for inference and generation, which enables more effective communication of information throughout the model during training. To improve performance on natural images, we incorporate a lightweight autoregressive model in the reconstruction distribution. These techniques permit end-to-end training of models with 10+ layers of latent variables. Experiments show that our approach achieves state-of-the-art performance on standard image modelling benchmarks, can expose latent class structure in the absence of label information, and can provide convincing imputations of occluded regions in natural images.

PDF Abstract NeurIPS 2016 PDF NeurIPS 2016 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here