An attempt at beating the 3D U-Net

6 Aug 2019  ·  Fabian Isensee, Klaus H. Maier-Hein ·

The U-Net is arguably the most successful segmentation architecture in the medical domain. Here we apply a 3D U-Net to the 2019 Kidney and Kidney Tumor Segmentation Challenge and attempt to improve upon it by augmenting it with residual and pre-activation residual blocks... Cross-validation results on the training cases suggest only very minor, barely measurable improvements. Due to marginally higher dice scores, the residual 3D U-Net is chosen for test set prediction. With a Composite Dice score of 91.23 on the test set, our method outperformed all 105 competing teams and won the KiTS2019 challenge by a small margin. read more

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods