An Attention-Driven Approach of No-Reference Image Quality Assessment

12 Dec 2016 Diqi Chen Yizhou Wang Tianfu Wu Wen Gao

In this paper, we present a novel method of no-reference image quality assessment (NR-IQA), which is to predict the perceptual quality score of a given image without using any reference image. The proposed method harnesses three functions (i) the visual attention mechanism, which affects many aspects of visual perception including image quality assessment, however, is overlooked in the NR-IQA literature... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet