An Efficient Asynchronous Batch Bayesian Optimization Approach for Analog Circuit Synthesis

28 Jun 2021  ·  Shuhan Zhang, Fan Yang, Dian Zhou, Xuan Zeng ·

In this paper, we propose EasyBO, an Efficient ASYnchronous Batch Bayesian Optimization approach for analog circuit synthesis. In this proposed approach, instead of waiting for the slowest simulations in the batch to finish, we accelerate the optimization procedure by asynchronously issuing the next query points whenever there is an idle worker. We introduce a new acquisition function that can better explore the design space for asynchronous batch Bayesian optimization. A new strategy is proposed to better balance the exploration and exploitation and guarantee the diversity of the query points. And a penalization scheme is proposed to further avoid redundant queries during the asynchronous batch optimization. The efficiency of optimization can thus be further improved. Compared with the state-of-the-art batch Bayesian optimization algorithm, EasyBO achieves up to 7.35 times speed-up without sacrificing the optimization results.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here