An Efficient Sampling Algorithm for Non-smooth Composite Potentials

1 Oct 2019  ·  Wenlong Mou, Nicolas Flammarion, Martin J. Wainwright, Peter L. Bartlett ·

We consider the problem of sampling from a density of the form $p(x) \propto \exp(-f(x)- g(x))$, where $f: \mathbb{R}^d \rightarrow \mathbb{R}$ is a smooth and strongly convex function and $g: \mathbb{R}^d \rightarrow \mathbb{R}$ is a convex and Lipschitz function. We propose a new algorithm based on the Metropolis-Hastings framework, and prove that it mixes to within TV distance $\varepsilon$ of the target density in at most $O(d \log (d/\varepsilon))$ iterations. This guarantee extends previous results on sampling from distributions with smooth log densities ($g = 0$) to the more general composite non-smooth case, with the same mixing time up to a multiple of the condition number. Our method is based on a novel proximal-based proposal distribution that can be efficiently computed for a large class of non-smooth functions $g$.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here