An Elementary Approach to Convergence Guarantees of Optimization Algorithms for Deep Networks

20 Feb 2020 Vincent Roulet Zaid Harchaoui

We present an approach to obtain convergence guarantees of optimization algorithms for deep networks based on elementary arguments and computations. The convergence analysis revolves around the analytical and computational structures of optimization oracles central to the implementation of deep networks in machine learning software... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet