An Empirical Comparison of Neural Architectures for Reinforcement Learning in Partially Observable Environments

17 Dec 2015  ·  Denis Steckelmacher, Peter Vrancx ·

This paper explores the performance of fitted neural Q iteration for reinforcement learning in several partially observable environments, using three recurrent neural network architectures: Long Short-Term Memory, Gated Recurrent Unit and MUT1, a recurrent neural architecture evolved from a pool of several thousands candidate architectures. A variant of fitted Q iteration, based on Advantage values instead of Q values, is also explored. The results show that GRU performs significantly better than LSTM and MUT1 for most of the problems considered, requiring less training episodes and less CPU time before learning a very good policy. Advantage learning also tends to produce better results.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods