An Empirical Study on Deployment Faults of Deep Learning Based Mobile Applications

Deep Learning (DL) is finding its way into a growing number of mobile software applications. These software applications, named as DL based mobile applications (abbreviated as mobile DL apps) integrate DL models trained using large-scale data with DL programs... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet