An Evaluation of the Effect of Automatic Preprocessing on Syntactic Parsing for Biomedical Relation Extraction

Relation extraction (RE) is an important text mining task which is the basis for further complex and advanced tasks. In state-of-the-art RE approaches, syntactic information obtained through parsing plays a crucial role... In the context of biomedical RE previous studies report usage of various automatic preprocessing techniques applied before parsing the input text. However, these studies do not specify to what extent such techniques improve RE results and to what extent they are corpus specific as well as parser specific. In this paper, we aim at addressing these issues by using various preprocessing techniques, two syntactic tree kernel based RE approaches and two different parsers on 5 widely used benchmark biomedical corpora of the protein-protein interaction (PPI) extraction task. We also provide analyses of various corpus characteristics to verify whether there are correlations between these characteristics and the RE results obtained. These analyses of corpus characteristics can be exploited to compare the 5 PPI corpora. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here