An Evasion and Counter-Evasion Study in Malicious Websites Detection

8 Aug 2014  ·  Li Xu, Zhenxin Zhan, Shouhuai Xu, Keyin Ye ·

Malicious websites are a major cyber attack vector, and effective detection of them is an important cyber defense task. The main defense paradigm in this regard is that the defender uses some kind of machine learning algorithms to train a detection model, which is then used to classify websites in question... Unlike other settings, the following issue is inherent to the problem of malicious websites detection: the attacker essentially has access to the same data that the defender uses to train its detection models. This 'symmetry' can be exploited by the attacker, at least in principle, to evade the defender's detection models. In this paper, we present a framework for characterizing the evasion and counter-evasion interactions between the attacker and the defender, where the attacker attempts to evade the defender's detection models by taking advantage of this symmetry. Within this framework, we show that an adaptive attacker can make malicious websites evade powerful detection models, but proactive training can be an effective counter-evasion defense mechanism. The framework is geared toward the popular detection model of decision tree, but can be adapted to accommodate other classifiers. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here