An Explicitly Relational Neural Network Architecture

ICLR 2020 Anonymous

With a view to bridging the gap between deep learning and symbolic AI, we present a novel end-to-end neural network architecture that learns to form propositional representations with an explicitly relational structure from raw pixel data. In order to evaluate and analyse the architecture, we introduce a family of simple visual relational reasoning tasks of varying complexity... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Evaluation Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.