An Image Segmentation Model with Transformed Total Variation

1 Jun 2024  ·  Elisha Dayag, Kevin Bui, Fredrick Park, Jack Xin ·

Based on transformed $\ell_1$ regularization, transformed total variation (TTV) has robust image recovery that is competitive with other nonconvex total variation (TV) regularizers, such as TV$^p$, $0<p<1$. Inspired by its performance, we propose a TTV-regularized Mumford--Shah model with fuzzy membership function for image segmentation. To solve it, we design an alternating direction method of multipliers (ADMM) algorithm that utilizes the transformed $\ell_1$ proximal operator. Numerical experiments demonstrate that using TTV is more effective than classical TV and other nonconvex TV variants in image segmentation.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here